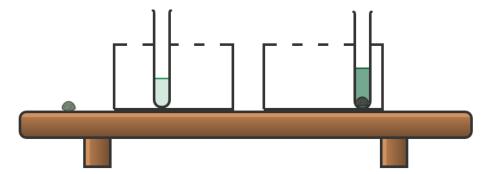
Practice questions

$Cr(s) + Fe^{2+}(aq) \rightarrow$	$Cr^{3+}(aq)$	+ Fe(s)
-----------------------------------	---------------	---------

(unbalanced)

Step #1: What colour are the 4 species?

Step #2: Balance the half equations


Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations to produce the overall balanced equation. Remember the number of e- in each side MUST be the same so that they

cancel out.

Write a description of what would be observed at the start and end of this reaction:

A piece of shiny grey metal was

Unbalanced half equations:	Fe ²⁺ → Fe	$Cr \rightarrow Cr^{3+}$	Species Colours
Balanced half equation:			Fe ²⁺ =
Oxidation / Reduction:			Fe =
This is because			Cr =
			Cr ³⁺ =
Overall equation:			

 $HCOOH(aq) + MnO_4^-(aq) \rightarrow CO_2(g) + Mn^{2+}(aq)$

(unbalanced)

Step #1: What colour are the 4 species?

Step #2: Separate out the species and balance the half equations

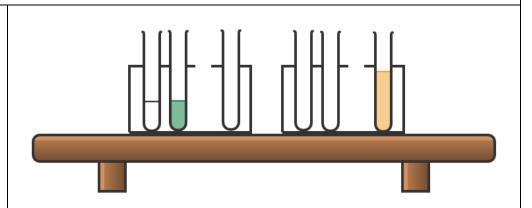
Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations.	ations to produce the overall balanced equation. R	emembe	er the number of e ⁻ in each side MUST be the sa	me so that they cancel
Write a description of vand during/end of this	what would be observed at the start reaction:			
Unbalanced half equations:	→		→	Species Colours
Balanced half equation:				MnO ₄ - =
Oxidation / Reduction:				Mn ²⁺ =
This is because				HCOOH =
				CO ₂ =
Overall equation:				

 $H_2O_2(aq) + Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + H_2O(1)$

(unbalanced)

Step #1: What colour are the 4 species?


Step #2: Separate out the species and balance the half equations

Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations to produce the overall balanced equation. Remember the number of e^- in each side MUST be the same so that they cancel out.

Write a description of what would be observed at the start and end of this reaction:

Hydrogen peroxide solution is mixed with....

Unbalanced half equations:	\rightarrow	\rightarrow	Species Colours
Balanced half equation:			
			Fe ²⁺ =
Oxidation / Reduction:			Fe ³⁺ =
This is because			$H_2O_2 =$
			H ₂ O =
Overall equation:			

A pinky-brown metal was added to some concentrated nitric acid. The solution turned from colourless to blue and a large amount of brown gas was released.

Step #1: Identify the species using the observations.

Step #2: Separate them out into two half equations and then balance these half equations

Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations to produce the overall balanced equation. Remember the number of e^{-} in each side MUST be the same so that they cancel out.

Unbalanced half equations:	→	→	Species Colours
Balanced half equation:			
			HNO ₃ =
Oxidation / Reduction:			Cu =
This is because			=
			=
Overall equation:			

Acidified dichromate solu	tion was mixed with hydrogen sulfide gas.	A dark green solution formed and a y	ellow solid.
Unbalanced half equation:	→	→	Species Colours
Balanced half equation:			
Oxidation / Reduction:			= =
This is because			= =
Overall equation:			

 SO_2 gas + dilute acidified $Cr_2O_7^{2-}$ solution react together to produce a dark green solution.

Hint: remember that SO_2 and HSO_3^- both react in similar ways to each other and are converted into the sulfate ion SO_4^{2-} unless a yellow solid is observed – which is sulfur, S.

$SO_2 + Cr_2O_7^{2-} \rightarrow [you \ have \ to \ work \ it \ out]$			
Expected observations. L	ink these to the species involved.		
'	'		
	T		
Unbalanced half	→	\rightarrow	Species Colours
equation:			'
Balanced half equation:			
Balanced Hall equation.			
Oxidation / Reduction:			=
Oxidation / Reduction.			_
This is less some			=
This is because			=
			=
			_
Overall equation:			